Module probabilités et statistique _ partie7

Zahra ROYER

- \rightarrow Les lois classiques de base
 - Loi Binomiale
 - Loi de Poisson
 - Loi de Laplace-Gauss dite loi Normale

\rightarrow Loi Binomiale:

Elle est définie par une répétition d'expériences à deux issues et uniquement 2. On doit penser à elle chaque fois que le caractère étudié est discret et se présente sous la forme suivante :

- 1°) On a observé un caractère à deux valeurs sur une population de n individus : être malade ou absent ou avoir une panne...et on a constaté un pourcentage p qui revient à chaque fois
- 2°) Si on note X le nombre d'individus ayant ce caractère on dit que : X suit une **Loi Binomiale notée B(n; p).** Concrètement cela veut dire que l'on peut calculer la probabilité que k individus aient ou non le caractère en question :

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

→ Loi de Poisson :

C'est une loi qui caractérise des événements identiques qui se succèdent dans le temps tels que : entrée dans un bureau de poste ; demandes de carburants ; les entrées dans un magasin ; des passages de véhicules sur un périphérique ou autoroute ; des appels reçus a un standard ; des connections WEB...

Si par un calcul répété sur le phénomène X observé on constate souvent que la variance et la moyenne sont voisines on peut aussi penser à la **loi de Poisson.** On dit alors que :

X suit une Loi de Poisson : P(m) (pour les événements dans le temps m désigne souvent at où : a est le taux des arrivées et t le temps moyen.

et concrètement cela veut dire que l'on peut calculer la probabilité que k individus aient ou non le caractère en question :

$$P(X = k) = \frac{m^{k} e^{-m}}{k!}$$

Remarque : (pour les événements dans le temps m désigne souvent at où : a est le taux des arrivées et t le temps moyen. Ce qui donne le sens suivant à l'expression : P(X=k) est la probabilité d'avoir k d'arrivées jusqu'à l'instant t.

→ Loi de Laplace-Gauss dite loi Normale :

- §_1 On rencontre cette loi très souvent, à chaque fois que le praticien doit traiter une variable continue dont les causes sont nombreuses et mal connues sans qu'on puisse détecter entre eux une prépondérance.
- §_2 Très présente dans de nombreux domaines : médecine, biologie, finance, logistique, transport, pression atmosphérique ; imprécisions des appareils ; usure de l'outillage ; ...
- §_3 C'est une loi à deux paramètres : moyenne et écart-type notée ; et la loi standard de moyenne 0 et d'écart type 1 est tabulée. Les logiciels des statistiques proposent des calculs de probabilités, directes, de quantiles, de seuils critiques.
- §_4 Si on note X le caractère étudié et si X suit une loi $N(m; \sigma)$ on peut à l'aide de cette loi calculer les probabilités que : X dépasse ; soit en dessous ; ou entre deux valeurs. Elle donne les valeurs cumulées et non les valeurs exactes
- § 5 Concrètement on procède comme suit

On centre et on réduit X pour se ramener à une variable unique z dite la centrée réduite de X. la nouvelle variable z suit la seule loi universelle et applicable à tout les phénomènes gaussiens. Cette loi s'appelle la loi normale standard, elle est notée N(0;1) et est donnée par les tables.

si
$$X \approx N(m; \sigma)$$
 alors: $T = \frac{X - m}{\sigma}$ suit la loi standard $N(0; 1)$

 $P(X \le k) = P(T \le \frac{k-m}{\sigma}) = \pi(t)où \quad t \ge 0$ directement lisible dans lorsque k > m. On pourra retenir les résultats suivants :

- $P(m-\sigma \le X \le m+\sigma) = P(-1 \le T \le 1) = \pi(1) \pi(-1) = 2\pi(1) 1 = 0.68$
- $P(m-2\sigma \le X \le m+2\sigma) = P(-2 \le T \le 2) = \pi(2) \pi(-2) = 2\pi(2) 1 = 0.95$
- $P(m-3\sigma \le X \le m+3\sigma) = P(-3 \le T \le 3) = \pi(3) \pi(-3) = 2\pi(3) 1 > 0.99$

Exercice d'application directe :

La demande d'un produit suit une loi de Gauss de moyenne 100 et d'écart-type 10.

- 1- Calculer la probabilité pour que la demande soit inférieure à 105,5.
- 2- Calculer la probabilité pour que la demande soit supérieure à 124
- 3- Calculer la probabilité pour que la demande soit comprise entre 110 et 129.

Corrigé : ici la variable demande $X \approx N(m; \sigma)$, avec m = 100 et $\sigma = 10$

$$1-P(X \le 105.5) = \pi \left(\frac{105.5 - 100}{10}\right)$$

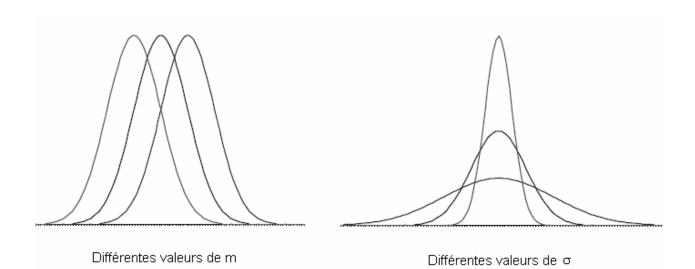
2-
$$P(X \ge 124) = 1 - P(X \le 124) = 1 - \pi \left(\frac{124 - 100}{10}\right)$$

$$3-P(110 \le X \le 129) = P(X \le 129) - P(X \le 110) = \pi \left(\frac{129-100}{10}\right) - \pi \left(\frac{110-100}{10}\right)$$

Dans ce qui suit, on doit noter que l'on se ramène automatiquement à la loi normale standard.

$$p(k) = p(X \le k) = p(T \le \frac{k-m}{\sigma}) = \Phi\left(\frac{k-m}{\sigma}\right)$$

$$lorsque, X \rightarrow N(m; \sigma)$$

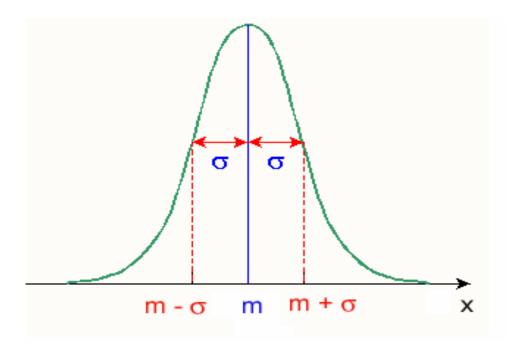


Les lignes suivantes constituent une base très simple qui permet de calculer les valeurs à partir de la table : Φ ou Π sont les lettres utilisées pour les probabilités

si
$$t \ge 0$$

 $\pi(t) = P(T \le t) = P(T \ge -t)$
 $\pi(-t) = P(T \le -t) = 1 - \pi(t)$
si $t < 0$:
 $\pi(-t) = 1 - \pi(t)$
 $P(a \le T \le b) = \pi(b) - \pi(a)$
 $\pi(0) = 0.5$
 $\pi(-a \le T \le a) = 2\pi(a) - 1$

Le schéma ci-dessous désigne une fourchette centrée autour de la moyenne d'amplitude 2 fois l'écart-type.

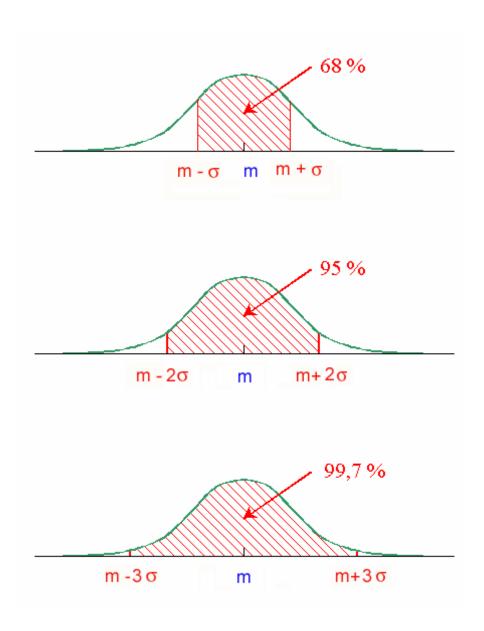


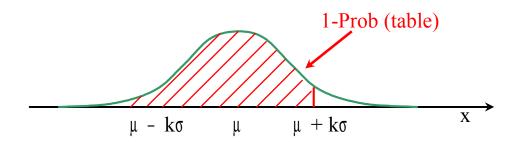
Le schéma qui suit résume ce que l'on a introduit en statistique (module PS_3) : Lorsque l'historique statistique laisse penser à une distribution dite "normale" loi de Laplace-Gauss parfaitement symétrique, on montre que :

- environ 68% des valeurs sont comprises entre \bar{x} σ et \bar{x} + σ
- environ 95% des valeurs sont comprises entre \bar{x} 2σ et \bar{x} + 2σ
- environ 99% des valeurs sont comprises entre \bar{x} 3σ et \bar{x} + 3σ

On retient que:

- La loi normale est la loi statistique la plus répandue et la plus utile.
- Elle représente beaucoup de phénomènes aléatoires.
- De plus, de nombreuses autres lois statistiques peuvent être approchées par la loi normale, tout spécialement dans le cas des grands échantillons.
- Sa facilité pour les utilisateurs peut amener à commettre des erreurs et donc PRUDENCE





Méthodologie :

- 1- Lire le texte de données très attentivement
- 2- Déterminer avec précision les variables aléatoires à étudier, en écrivant en toute lettre le nom de la variable étudiée.
- 3- Comprendre la nature de la variable aléatoire : discrète, continue,
- 4- Si la loi de la variable étudiée est explicite, noter avec précision les probabilités d'obtenir :
 - *Un nombre k de succès*,
 - Plus de k succès
 - Moins de k succès.
 - Au plus k succès,
 - Au moins k succès
- 5- Pour mieux comprendre les calculs, rédiger des conclusions en termes de pourcentages, résumant concrètement les calculs.
- 6- LIRE l'AIDE d'EXCEL

Exercice 1:

Soit un parc de 40 PC; le technicien évalue que 9% des machines sont H.S. Calculer la probabilité d'avoir : 0 ; 1 ; 2 ...6 machines H.S. Corrigé :

La variable à étudier X « Nombre de PCHS » suit naturellement une loi binomiale B(40;0.09)

xi	pi	%
0	0,02299618	2,29961797
1	0,090973898	9,09738975
2	0,17544966	17,544966
3	0,219794079	21,9794079
4	0,201075352	20,1075352
5	0,143183328	14,3183328
6	0,082605766	8,26057661

Comme np = 3.6, n(1-p) = 36.8, np(1-p) = 3.31, on peut obtenir des résultats similaires, en approchant la loi binomiale par la loi de Poisson de paramètre $\lambda = 3.6$ et les tableau suivant donne les probabilités demandées :

xi p'i %
0 0,027323722 2,73237224
1 0,098365401 9,83654008
2 0,177057721 17,7057721
3 0,212469266 21,2469266
4 0,191222339 19,1222339
5 0,137680084 13,7680084
6 0,082608051 8,26080505

Exercice 2:

Une entreprise de transport qui emploie 50chauffeurs s'intéresse à leur santé. Le bilan est que 5% seulement souffre de problèmes vision. Soit un lot de 10 routiers. Calculer la probabilité d'avoir 0 ; 1 ; 2 ; plus de 2 personnes qui souffre de vision. Corrigé : le tableau qui suit donne les résultats

	Binon	iale	
	(10;5	%)=p	tifs=
X	i	50*p	i
	0 0,598	73694 29,9	36847
		15,7	56235
	1 0,31	51247	2
		3,73	17399
	2 0,07	46348	3
		0,52	37529
	3 0,010	47506	7
		0,04	82404
	4 0,000	96481	1
		0,00	30467
	5 6,093	5E-05	6
		0,00	01336
	6 2,672	6E-06	3
	_		
	Poisse	on:	
X	0,05		

0 0,60653066 30,326533

1 0,30326533

15,163266

5

3,7908166 2 0,07581633 2 0,6318027 3 0,01263606 7 0,0789753 4 0,00157951 5 0,0078975 5 0,00015795 3 0,0006581 6 1,3163E-05 3

Exercice 3:

Un stock de matières dangereuses dans un laboratoire pharmaceutique suit une B(50; p). Combien est p la probabilité de fuite si le gérant souhaite que la probabilité d'avoir 0 unité est 0.85.

Corrigé : X : « nombre d'unité mal stockées » suit une B(50 ; p)

$$P(X=0) = \begin{pmatrix} 0 \\ 50 \end{pmatrix} p^{0} (1-p)^{50} = 0.85$$

$$p = 1 - 0.85^{\frac{1}{50}} = 0.0032451$$

Exercice 4:

Un logisticien assure les suivis qualité dans une entreprise spécialisée en matériels informatique. Il a remarqué que X= le nombre de fiches signalant un retard dans la livraison suit une loi binomiale B(6;0,5). Calculer la probabilité qu'il ait : X=0; 1;2...6.

Calculer la probabilité qu'il ait moins de 3 fiches

xi	pi		cumulative
(C	0,015625	0,015625
	1	0,09375	0,109375
	2	0,234375	0,34375
•	3	0,3125	0,65625
4	4	0,234375	0,890625
;	5	0,09375	0,984375
(3	0,015625	1

La probabilité qu'il ait moins de 3 fiches est obtenue par cumul, elle est **en gras** dans le tableau

Exercice 5:

*Un*e hotline a enregistré que le nombre moyen d'appels téléphoniques est de 1.8 appel/mn.

Calculer la probabilité pour qu'il n'y ait pas d'appels ; qu'il y en ait un seul, deux, au moins deux appels.

X=« le nombre d'appels téléphoniques au standard par minute ».

X suit une loi $P(\lambda)$ avec : $\lambda=1.8$ appel/mn

xi pi cumulative 0 0,16529889 0,16529889 1 0,297538 0,46283689 2 0,2677842 0,73062109 3 0,16067052 0,89129161 4 0,07230173 0,96359334 P(X=0)=0,16529889 P(X=1)=0,297538 P(X=2)=0,2677842

 $P(X>1) = p(X\ge 2) = 1 - P(X\le 1) = 1 - 0.46283689 = 0.5371$

Exercice 6:

Soit X la variable qui mesure la rentabilité globale (c'est le rapport du bénéfice au capital employé). Pour l'entreprise FUTURCOM, X suit une loi normale de moyenne 115 et d'écart-type 45.

- 1) calculer la probabilité que la rentabilité globale dépasse 225
- 2) calculer la probabilité que cette rentabilité ne dépasse pas 217
- 3) calculer la probabilité que ce ratio économique soit compris entre 75 et 230.
- 4) Trouver la fourchette centrée autour de la moyenne, contenant la rentabilité dans 97.05% des cas.

Corrigé:

1) *X suit une loi normale N (115 ; 45), donc P(X\ge 225)=1-P(X\le 225).*

On centre et on réduit pour utiliser la table :

On pose:
$$U = \frac{X - m}{\sigma} = \frac{X - 115}{45}$$

Et
$$P(X \ge 225) = 1 - P(X \le 225) = 1 - P(U \le \frac{225 - 115}{45}) = 1 - \pi(2.44)$$
 et d'après la table

= *1- 0,99274623*= *0,00725377*

Il y a 0.725% de chances de dépasser une rentabilité de 225.

- 2) $P(X \le 217) = P(U \le \frac{217 115}{45}) = 0.9882947$, dans 98,8% de cas la rentabilité reste en dessous de 217.
- 3) $P(75 \le X \le 230) = P(X \le 230) P(X \le 75) = \pi \left(\frac{230 115}{45}\right) \pi \left(\frac{75 115}{45}\right) = 0.99469908 0.1870314 = 0.80766768$
- 4) La fourchette centrée autour de la moyenne s'écrit : $[m^{\pm} a]$: $P(m-a \le X \le m+a) = 0.9705$

$$P(m-a \le X \le m+a) = P(X \le m+a) - P(X \le m-a)$$

$$= P(U \le \frac{a}{\sigma}) - P(U \le -\frac{a}{\sigma}) = \pi \left(\frac{a}{\sigma}\right) - \pi \left(-\frac{a}{\sigma}\right)$$

$$= 2\pi \left(\frac{a}{\sigma}\right) - 1 = 0.9705$$
 donc

$$\pi\left(\frac{a}{\sigma}\right) = \frac{1.9705}{2} = \pi\left(2,17673963\right)$$

$$\frac{a}{\sigma}$$
 = 2,17673963

$$a = 2,17673963 * \sigma$$

a = 97,9532831

La fourchette contenant la rentabilité ainsi distribuée, dans 97.05% des cas, est donc : [115 ± 97.953]

Exercice 7

L'entreprise SuperMeca est très soucieuse de livrer ses clients à temps.

Parmi tous les indicateurs qui contribuent à augmenter son efficacité il y a le ratio technique X, qui mesure le rendement du travail.

Plus exactement c'est X: « **Production/nombre d'heures-hommes** »**considérée comme une variable aléatoire continue**.

L'entreprise a constaté au vu de ses anciennes statistiques que ce ratio X est une variable suivant une loi normale de moyenne inconnue m, avec un écart-type de 10.

Nous savons que ce ratio dépasse 99.2 dans 99.5% des cas.

Trouver le ratio moyen de cette entreprise.

Calculer alors la fourchette centrée autour de cette moyenne ou le ratio se trouve dans 75% des cas.

Corrigé : Calcul du ratio moyen de cette entreprise

$$P(X \ge 99.2) = 0.995$$

$$= P(U \ge \frac{99.2 - m}{10}) = 0.995$$

$$= 1 - \pi \left(\frac{99.2 - m}{10}\right) = 0.995$$
On sait que : = $\pi \left(\frac{m - 99.2}{10}\right) = 0.995 = \pi \left(2,5758293\right)$

$$\frac{m - 99.5}{10} = 2,5758293$$
donc $m = 10 * 2,5758293 + 99.5$
 $m = 125.25$

On peut conclure que la variable suit la loi N(125.25; 10)

Pour la dernière question revoir la question identique de l'exercice précédent.